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Flow through non-uniform gauze screens 
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Department of Mechanical Engineering, University of Salford 

(Received 1 March 1973) 

An experimental investigation into flow through shaped gauze screens in two- 
dimensional and axisymmetric situations has shown that there is disagreement 
between measured velocity profiles and those computed from the method de- 
veloped by Elder (1958). This disagreement has been shown to be attributable to 
the retention of a term of second order in the basic linearization and comparisons 
between experimental and theoretical profiles omitting bhis term are in good 
agreement. 

1. Introduction 
Early empirical and ad hoc methods of profile generation, which in general 

required considerable experimental work, have been superseded by methods 
with a strong theoretical basis in which the required downstream velocity dis- 
tribution is related to a resistance grading produced either from a variably 
spaced grid of parallel rods (Owen & Zienkiewicz 1957) or a shaped gauze screen 
(Elder 1958). 

The method due to Owen & Zienkiewicz (1957) has beenverifiedexperimentally 
and used successfully to generate specified velocity distributions by several dif- 
ferent workers (Livesey & Turner 1964; Cowdrey 1967). This method was shown 
by Elder (1958) to be a particular case of his own analysis. 

The focus of the present investigation was the shaped gauze screen. This form 
of screen used as a velocity profile generator has obvious advantages in axisym- 
metric and three-dimensional flow situations. The ability to vary the gauze (say 
mesh and wire diameter) offers the possibility of varying both the turbulence 
intensity and scale, at least initially, in the downstream flow. 

The initial aim of this investigation was to apply Elder’s method (which was 
supported by experimental evidence: Elder (1958), Turner (1969)), in which the 
velocity profiles far upstream and far downstream of the screen, the screen shape 
and the gauze properties are linearly related, in order to generate arbitrary 
velocity distributions in two-dimensional, axisymmetric and, ultimately, three- 
dimensional flow. A supporting experimental investigation indicated thati in 
certain circumstances the method gave obviously incorrect results. The authors 
were thus led to re-examine Elder’s treatment of the equations governing flow 
through gauze screens. 
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FIGURE I. Two-dimensional co-ordinate systems. 

2. The linearization due to Elder (1958) 
The screen arrangement and co-ordinate system are shown in figure 1. Equa- 

tion (1.8) in Elder (1958) gives the following conditions at  the screen, based on 
the assumption that 8, the angle between the normal to the screen and the flow 
direction, is small: 

u1 = u2 = q, (1) 

Bqtan6 = (I-B)vl-v2, ( 2 )  

in which u and v are the non-dimensional velocity components at the screen in 
the 2 and y directions, suffixes I and 2 denote values measured upstream and 
downstream of the screen respectively, q is the non-dimensional velocity com- 
ponent at  the screen, u and u* are the non-dimensional velocity distributions 
far upstream and downstream of the screen, B is the gauze deflexion coefficient 
defined by Bvsl = vsl - vs2, suffixes n and s denote values measured normal and 
tangential to the screen, y = K cos2 6 and K is the gauze resistance coefficient 
defined by K = Ap/+pUt, where Ap is the loss in static pressure through the 
gauze, p is the fluid density and U is the local velocity upstream of the screen. 

The angle 8 is assumed small and 0 Q B Q I ;  with the additional assumption 
that the variations in q are small, the product BqtanB is approximated to 
Btan8  in (2). 

Elder approximated y by the expression yo(l +s(y)), where yo is a mean 
value and the assumption is that Is@) I < 1, however, since y = K cos2 8, s(y) is 
essentially a second-order term in 8. The nature of the s term can be understood 
more fully by writing 

yo = lo1 K cos2 ed(y /L)  as K, cos2 a, 

= K ,  cosza 

where a is a mean gauze angle. Thus 

K cos2 8 (k2-kz)+&(k:a2-k282) 
-1 N_ 

kt( I - ia2) 
, 

where k = ,,/K and k, = JKa.  
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To first order the first term in the numerator on the right-hand side of this 
equation may be approximated to 2k,6k, whilst the second term may be re- 
written as &k,a - &?) (k,a + ko), which may be approximated to second order 
as +(a2 - e2) k:. Hence 

(4) 

Thus if the average screen angle is small and variations of the local gauze angle 
are small the second term in (4) is of second order but the first term is of first 
order. If 8 is constant the second term is identically zero. If 8 is not small the 
second term becomes of first order; however, the conditions under which (1)-(3) 
were obtained are then violated and the validity of the whole theory might be 
expected to be in doubt. Equation (1.10) in Elder (1958), i.e. 

~ ( y )  N SK/K, + (a' - 0'). 

u--u* = ?o(Q-1)+Byos(y), ( 5 )  

is valid only for the cases 8 3 0, K = K(y) or 8 constant and small. As Elder 
pointed out the first condition in (5) gives a generalized statement of the result of 
Owen & Zienkiewicz (1957). 

When 0 is variable the order analysis clearly indicates that the s(y) term should 
be discarded and the equation reduced to 

u-u* = K(q-  1). (6) 

Though this equation is strictly valid only for 8 small the experimental evidence 
of this paper and of Livesey & Turner (1964) and Livesey & Laws (1972) shows 
surprisingly good agreement with the theory for relatively high shear parameters 
(du*/d(y/L)  as high as 0.8) and relatively high 8's (6' as large as $7). In  view of 
this agreement, it is possible that the extension to a higher order theory, say 
second order, if attempted, would produce terms which are basically self- 
cancelling and thus reduce to the first-order theory presented here. Thus to 
achieve an improved theory a third-order theory would be necessary. 

3. Modification of theory 

equation (2.12) to 
The modifications to the analysis of $ 2  of Elder's (1958) paper reduce Elder's 

m 

n = l  
u*-1 = A ( u - l ) + E  ancos(n~g/L), (7) 

where E and A are constants given by 

E = K/(2+K-B) and A = 1-K(1-E). 

The Fourier coefficients a, are related to the screen shape by the equation 

m 

n= 1 
Btan8 = C ansin (nny/L). 

The solutions of the Cwo distinct problems which can be solved by this analysis, 
viz. (i) the calculation of the velocity distribution downstream of a shaped gauze 
screen, or (ii) the calculation of the screen shape required to produce a specified 
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FIGURE 2. Two-dimensional screen shape. 

downstream profile, may both now be easily obtained from (7) and (8). (If the 
s(y) term is retained the solution of (2) requires an iterative technique (Turner 
1969) in order to obtain what is now recognizable as a ‘pseudo’ solution.) 

4. Experimental results 
Experimental results were obtained for both two-dimensional and axisym- 

metric flow. Results for the latter case can be found in Livesey & Laws (1972), 
although several of these results are included here. 

A simple demonstration of the effect of the inclusion of the s(y) term is obtained 
from a test choosing the two-dimensional screen shape X(y) given by 

X ( y ) / L  = -A cos (4ny/L), 

which is shown in figure 2. 

distribution as 
Applying equations including the s(y) term wouldgive the downstream velocity 

u*- 1 = A ( u - ~ ) - & ( I - A ) ~ ( ~ J ) + Q ~ T E B c o s ( ~ T ~ / L ) ,  (9) 

where s(y) = K/yo( 1 + c2 sin2 (4nylL)) - 1, 

yo = K t a r 1  [(Am4 - 1) (I + 3r2)]-l, c = +nEB 

and E and A are given by 

E = yo/(2+yo-B) and A = l-yo(l-E). 

Neglecting the s(y) term would give the downstream profile as 

U* - I = A(u - 1) + 4nEB cos (47~t~/L), (10) 

whereE = K/(Z+K-B)  andA = 1-K(1-E). 
I n  figure 3 the experimental results are shown together with the theoretical 

results obtained from (9) and (10). The tunnel used had an IS x Isin.  working 
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FIGURE 3. Comparison between theoretical and experimental profiles. -, theoretical 
solution excluding the .s term; --- , theoretical solution including the 5 term; x ,  ex- 
perimental results. 

section and the mean test velocity was 90ftls. The gauze used was Ig-mesh, 
27s.w.g. with K = 1-05 and B = 0.2. 

As can be seen from figure 3 the solution obtained from (9) is not in agreement 
with the measured profile (measured t L  downstream of the screen) whilst the 
profile obtained from (10) is in reasonable agreement. 

In  addition a theoretical and experimental investigation was conducted for 
the axisymmetric case. Figures 4 (a)  and (b )  show some results from this investiga- 
tion. The screen used was basically quartic in shape and had a polar height of 
0.75 in. (the pipe diameter being 2r, = 4.06 in.). The gauze was 16-mesh 27s.w.g. 
In  these figures the solid lines are the theoretical results ignoring the s term 
whilst the dotted lines are the theoretical results including the s term. The 
experimental results were obtained from a traverse one diameter downstream of 
the screen. Though in figure 4 (a )  the two solutions (including and omitting the 
s term) are similar and both are in reasonable agreement with experiment, clearly 
in figure 4(b) the solution including the s term is in error whilst the solution 
neglecting the s term is in agreement with the experiment. 

The experimental results obtained by Elder (1958) and Turner (1969) however 
were in apparent agreement with the theory including the s(y) term. In  Elder’s 
case the results were obtained for flow downstream of an inclined screen and 
a parabolic screen. In  the first case the s(y) term is identically zero since 0 is 
constant, In the second case though r9 is variable the screen was positioned so 
that its pole faced downstream and for this case the solutions including and 
excluding the s(y) term are similar. Thus fon both of these cases the apparent 
agreement between Elder’s theory and experiment is coincidental. The screens 
tested by Turner (1969) were such that Is(y)I was small and thus the effect of the 
term’s inclusion was not distinguishable from experimental scatter. 
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FIGURE 4. Comparison of results with pole of screen facing (a) downstream and ( b )  upstream. 
-, theoretical solution excluding the s term; - - - , theoretical solution including the 
s term; x , experimental results. 

5. Conclusions 
The analysis developed by Elder (1958) (equation (5)) has been shown to be 

applicable only for the case of flow through a screen of constant 8 and constant or 
varying resistance. When the screen angle varies across the duct it has been 
clearly demonstrated by experiment thaC (5) is in error. The discrepancy between 
theory and experiment in this case has been shown to be attributable to the 
inclusion of a second-order term in the essentially first-order theory. For the 
variable4 situation, equation (6) is valid. With this modification the analysis 
gives a useful relationship between a non-uniform screen shape and the velocity 
distributions far upstream and far downstream of the screen. It should be 
emphasized, however, that the theoretical limit on the analysis is that 6' is small 
and thus care should be taken not to misuse the analysis. 

The authors acknowledge the helpful advice of Dr H. K. Zienkiewicz, Uni- 
versity of Exeter, especially in relation to the demonstration of the linearization. 
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